

Future Infrastructures Forum - II

Professor Priyan Dias University of Moratuwa, Sri Lanka

Nature of Presentation

- APPROACH: Snapshots; NOT Details
- SCOPE: Country paper; BUT personal choices
- UNIVERSITIES: Moratuwa, Peradeniya
- FIELDS: Structural, Materials & Geotechnical
- **TYPE:** Country specific; PLUS Cutting edge
- **COUNTRY**: Developing, Tropical, Historical
- MOTIVATION: Research partnerships, funding

a wise man who built his house on the rock (Matthew 7:24)

Tsunami Loads & Vulnerability

Priyan Dias, Hiran Yapa, Kosala Bandara, Nuwan Dewapriya, (University of Moratuwa) Navin Peiris (EEFIT, U.K.)

Vulnerability Curves – Survey (Peiris; Dept of Census & Statistics)

- Damage Classification
- Survey
- Curve Fitting

Simulations

- Monte Carlo (limited)
- -Matching survey
- Exploring improvements

Parameter	Distribution
Roof Weight	Random Normal
Wall height	Random Normal
Wall system	4 Discrete States
Plastering	2 Discrete States

Tsunami Loads

-Arriving at a routine design procedure

-Reconciling literature

-Obtain in terms of hydrostatic load

- Fs = 0.5 γ H² B
- H = inundation depth

Cracking in concrete (& healing)

Will the line stretch out to the crack of doom? – Macbeth, Act 4, Sc 1

Anura Nanayakkara

(University of Moratuwa)

15.00

Delayed Ettringite Formation

-Phenomenon

(High early temperature; moisture in service)

-Mechanisms

Self Healing of Concrete Cracks

- Mechanisms

- -Hydration of cracked cement grains
- -Formation of Calcium carbonate

-Factors

- -Crack width
- -Hydraulic gradient (water head; specimen length)
- -Fine particles within crack

 $q = \Delta p \ d \ w^3 / 12 \ \eta \ l$

Equivalent Crack width

- q = initial flow rate
- Δp = pressure head
- d = surface crack length
- w = equivalent crack width
- I = path length
- η = viscosity of water

Flow through parallel plates

There's plenty of room at the bottom – Richard Feynman

Micro & Nano Particles in Concrete

Priyan Dias, Anura Nanayakkara (University of Moratuwa) Priyan Mendis (University of Melbourne) K.R.B. Herath & S.R. Herath (University of Peradeniya)

Geopolymer Concrete

- Constituents

- -Fly ash (or Kaolin) source of SiO₂ & Al₂O₃
- -NaOH (or KOH) cation source for catalysis
- $-Na_2SiO_3$ source of SiO₂, increases pH
- No OPC
- Utilization of waste (fly ash)
- Precasting application

Extrudable Mix

- Process Variables

- amount of water used
- pH of the mixture
- mixing procedure
- speed of mixing
- mixing duration
- reaction temperature
- curing temperature
- -curing duration

Self Compacting Mix

- Increases with duration
- Has a maximum wrt temperature
- Displays time-temperature tradeoff

Compressive strength gain of concretes				H (G	HVFA & Nano SiO ₂ (Gengying Li, 2004)				
Binder	Cube con	pressive stre	ngth (MPa)						
combination	1 days	3 days	7 days	28 days	56 days	112 days	360 days	720 days	
PCC	40,5	51,2	66,8	81,1	87.9	91.2	96.3	103.7	
HFAC	16.8	27.6	35.0	54.4	71.6	85.7	95.4	108,5	
SHFAC	30.4	43,9	59.0	75.8	85	92.2	104,5	115.9	

ggbfs & CaCO₃

Collaborations in Nanotechnology

Sri Lanka Institute of Nanotechnology (SLINTEC): http://www.slintec.lk

Focus on Sustainability

Initiative on Sustainable Construction (Nanoparticles in Concrete)

Partners: University of Moratuwa (Prof Priyan Dias – special projects advisor)

Experimental

University of Melbourne (Prof Priyan Mendis)

Numerical

SLINTEC

Microstructural

Equipment: Atomic Force Microscope Particle Size Analyser —

X-ray diffractometer

Note: Other collaborations are welcome

Carbon Nanotubes

High strength (50 GPa) 100 times that of steel High stiffness (1 TPa) 5 times that of steel High elastic range (5-10%) 25 times that of steel Large deformations out of plane

Architecture aims at eternity - Christopher Wren

Ancient Structures

Munidasa P. Ranaweera (University of Peradeniya)

We know more about the movement of celestial bodies than about the soil underfoot - Leonardo da Vinci

Geotechnical Engineering Ground Improvement

Athula Kulathilake (University of Moratuwa)

Y(m)

Electro osmotic improvement of peaty soils

*When a DC Voltage difference is provided through a soil;

- Cations will move towards cathode
- Anions will move towards anode

*These ions with carry their hydration water with them

* More cations than anions; so net flow towards the cathode

* Enhancements in <u>consolidation</u> <u>characteristics</u> and <u>shear strength</u>

	·
LOCATION	C _U (kN/m²)
Near Cathode	19.16
10 cm from Cathode	29.49
Near Anode	38.04

The practitioner is confronted with a choice. Shall he remain on the high ground where he can solve relatively unimportant problems according to his standards of rigor, or shall he descend to the swamp of important problems where he cannot be rigorous in any way he knows how to describe - Donald Schon

Systems thinking Case Study - Vulnerability to Bomb Blast

Priyan Dias & Ravihansa Chandratilake (University of Moratuwa) David Blockley (University of Bristol)

Socio-technical nature

Grounded theory for generating key issuesNOT "selective inattention"

Uncertainty

- Imprecision (Fuzziness); Incompleteness
- Interval numbers

Interval Probability & Italian Flags

(Blockley & Davis, Bristol U.)

- Qualitative Factors
- Admission of Incompleteness
- Enables Conversation
- Multi-layer perception
- $S_n =$ "necessary" evidence for the holon $S_p = "possible"$ evidence for the holon $S_p - S_n$ = uncertainty (incompleteness) Hence (S_n, S_p) $(0,0) \equiv$ certainly false $(1,1) \equiv$ certainly true $(0,1) \equiv$ completely uncertain S_n S_p 0 1

Treat the earth well: it was not given to you by your parents, it was loaned to you by your children - African Indigenous

Sustainability

Priyan Dias & Ravihansa Chandratilake (University of Moratuwa) Moratuwa University Design Team

- Rating Systems

Sustainability Indicators

- Importance of Context

	Domain weight (%)					
Scheme	Site	Energy	Water	Material	IEQ	Waste &
		Efficiency	Efficiency			Pollution
LEED (USA)	26.0	<u>35.0</u>	08.5	12.0	14.0	04.5
BREEAM (UK)	15.8	<u>29.5</u>	06.3	25.2	11.6	11.6
SABA (Jordan)	11.5	25.7	<u>30.9</u>	11.5	13.2	07.2
Pearl Rating (UAE)	16.6	25.5	<u>27.4</u>	10.2	14.6	05.7
GBI (Malaysia)	15.4	<u>32.1</u>	12.8	07.7	26.9	05.1
Green Star (NZ)	22.2	<u>27.8</u>	11.1	11.1	22.2	05.6
Green Star (Australia)	18.8	19.6	09.8	<u>25.9</u>	23.2	02.7
CASBEE (Japan)	20.0	<u>26.7</u>	02.7	17.3	<u>26.7</u>	06.6
Sri Lanka Survey (SL)	<u>25.7</u>	22.2	14.4	14.5	12.3	10.9

LEED Platinum Award

MAS Holdings – Green Factory

Features:

Solar panels on roof Evaporative cooling Natural ventilation Passive techniques Rainwater harvesting **Result:**

45% saving on energy

Rohinton Emmanuel, Thishan Jayasinghe, Chintha Jayasinghe, Rahula Attalage, Ajith de Alwis

Service Life

-Technical constraints; Social requirements
-Crossing threshold
-If it has lasted for n years, it will last for n more?

Gaffoor Bldg, Colombo Fort; 125 yrs old

New York's skyline from a tower of the Brooklyn Bridge today (above) and fifty years ago (below). Note the many sailing ships at the docks in the lower view

Summary

Tsunami Loads & Vulnerability	Loads on vegetation shields
Cracking in Concrete & Healing	Autogenous crack healing
Micro & Nano Particles in Concrete	Enhancing properties of cement replaced concretes
Ancient Structures	Understanding deterioration & planning restoration
Geotechnical Engineering	Ground improvement
Systems Thinking	Addressing completeness; Tools to promote reflection
Sustainability	Solar radiation for energy and water crises; Service life