WSP

Future Infrastructure Forum Cambridge 17—18 January 2012

Steve Matthews MSc DIC CEng FIStructE MICE WSP UK

Views from the front line......

- Buildings Structural Engineer
- Buildings M & E Engineer
- Bridges & Civil Engineering structures Engineer
- Own view
 - Bridge engineer
 - Involved in strategy and tactical development
 - Managing £39m of Research and technical consultancy

Buildings – Structural Engineer

Loading

- Wind speed
- Live loading "Real" loads
- Load positioning

Building response

- Columns
- Piles
- Vibration
 - Affects comfort

Particular issue

Piles - instrument and document for re-use.

Buildings – M&E

Most buildings are "SMART" from M&E point of view - Can be adjusted

- Consider the benefits to the users = selling point for the developer
- Already happening
- Consider the micro, macro and neighbourhood
 - The building as part of the city

Understanding of people movements

- Traffic flow
- Microsim
- Make use of existing data available (e.g. Oyster)
- "Fine tune" the building response
- e.g.
 - Building linked to transport arrivals Programme lifts to respond
 - Finland bus arrival link via mobile phones

Bridges and civils -1

Whole life value?

- Whole life cost Nice idea, difficult to justify up front costs, discount rates
- Needs a rethink.
- Whole life ENGINEERING
 - Different see later

Asset management?

- Appropriate risk based models
- Readily used and understood
 - Assist the decision making, but don't take it

Remote monitoring for areas of concern?

- Safeguarding future serviceability
- Use of plant for monitoring where relevant
- Lessons from Finland, Se climatic loadings

Bridges and Civils 2

Design & procurement

- Sustainability Simplified rules to common benchmarks
 Structural engineering
- Modular design
- Use/adoption of CFRP and other materials not prone to corrosion
 Geotechnical engineering
- Embankments and cuttings
- Early infrastructure
 - Absence of design, variability of materials
 - Stability prediction, remote monitoring

Whole Life *Engineering*?

Consider

- "Grass field" back to "grass field"?
- Client has a stake in the project
- Public has a stake in the environment.
- Designer and Contractor have a stake in safe and profitable realisation
- Some form of "audit" at design stage?
 - Assess opportunity cost vs actual cost
- Optimize
 - Understand what client and user will value

Whole Life *Engineering -2*

Define Lifespan

- Use of structure
- Future use of structure
- Likely alterations
- Maintenance and repair
- Demolition and removal
- Residual effects

Examples

Foundations

- Instrument, test and re-use piles on congested sites
- Document in Health & Safety File Extension of CDM??

Buildings

- Re-use of structural core
- Perimeter columns & connections allow for extensions

Bridges

- Design for widening
- Allow for increased loading

Highways

- Purchase of land for "green" lanes
- Active Traffic Management

Oil platforms

Installation, relocation, removal, disposal

Monitoring vs. Monetary????

Reality is kicking in

- Securing funds is getting tough
- Must be able to support what you are proposing with a credible business case
- Written in terms that the client can relate to, and support.

Negative angle

"If promised benefits don't happen - we'll sue....."

So what?

Must

- Take time to understand what stakeholders value
- Make sure proposals can be supported in these terms
- Otherwise wasting time.

•Stakeholders?

Users of the infrastructure

- May or may not notice the improvement quickly becomes the "norm"
- Probably not bothered so long as
 - Doesn't inconvenience
 - Doesn't offend

Clients

- Cost is <u>always</u> a factor
- Why should they spend the money?
 - Need to be able to express this and consider it
- Will not be interested unless "Value for Money"
 - "Value....." An agreed and well defined scope before starting
 - ".....for money" For a cost effective sum of money.
 - Stick to the plan it unless there are agreed changes "no surprises"
- Other major drivers Safety, public perception, ministerial imperative (etc)

Summary – Clarity of intent

Existing infrastructure

- Concern for condition
- Rate of deterioration and residual life
- How it affects funding needs

New infrastructure

- Data gathering, use, analysis and performance
- Feedback & adjust for real time or future improvement
- How if affects funding ("needs" or "commercial return")

"SMART" operation

- Consider context
 - Component (element)
 - Assembly (structure)
 - Neighbourhood (structure operating context)
 - Environment (global impact)
- Express as benefits that the client understands

Summary – Clarity of proposal

"FEATURES" of proposal

- Understand key drivers
 - For stakeholders
 - Especially the client
- Demonstrable benefit to client
- Saleable in terms they can relate to <u>and promote</u>
- Manageable proposal
 - Clear objectives and scope
 - "Controlled" surprises
- Delivery and collect evidence
 - Ability to demonstrate "Value for Money"

