Future Infrastructure Forum - 3 Asset management group

Cambridge: 17,18 April 2012

1 17,18 April 2012 Cambridge FIF2 asset management group slides - v3

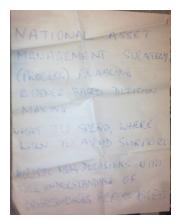
Asset management group

name	organisation	email address
David Pocock (chair)	Halcrow	pocockdc@halcrow.com
Mike Chrimes / Matthew Parker	ICE	mike.chrimes@ice.org.uk / matthew.parker@ice.org.uk
Mohammed Elshafie	Cambridge University	me254@cam.ac.uk
Graham Cole	Surrey County Council (rtd.)	graham.cole11@btopenworld.com
Zhen Chen	Heriot-Watt University	zhen.chen@hw.ac.uk
Muhammad Imran Rafiq	University of Surrey	m.rafiq@surrey.ac.uk
Richard Woodward	TRL	rwoodward@trl.co.uk
John Cooper	Humber Bridge	john.cooper@humberbridge.co.uk
Graham Ive	UCL	g.ive@ucl.ac.uk
Duncan McFarlane	Cambridge University	dcm@eng.cam.ac.uk
Richard Fish	Bridge Owners' Forum	richard.trenona@fsmail.net

Asset Management group

FIF-2: 17,18 January 2012

- first break-out session
- second break-out session
- summary as presented


FIF-3: 16,17 April 2012

• slides prepared between FIF-2 and FIF-3

Summary as presented

- We propose a National Asset Management strategy to provide a process enabling evidence based decision making, so we will know what to spend, where, and when, to avoid surprises.
- This will enable a holistic view across all assets, so decisions can be taken with a full understanding of consequences across all assets.
- We are dealing with active, ageing, and complex networks managed in a diligent, best endeavour, but often on a single asset or local basis.
- We face the external drivers of growing demand, climate change and economic and financial crises.
- The need is to spend "more cleverly", to obtain the performance needed without unacceptable surprises or consequences.

Scope and benefits

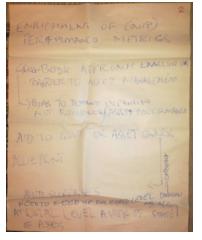
- Scope asset-based businesses (cf facilities management)
- Engineering leadership of research into long-term "management"
- Step change needed, vs tends to be incremental
- Success = safe, reliable, reasonable costs
- Less network disruption = less costs
- Sustainability : ? pay more to reduce CO₂
- To demonstrate extent to which ageing / deteriorating
- Financial framework for notional depreciation
- Improved understanding across systems
 - Integrated criteria
 - Appropriate risk of failure
 - Improved performance of assets

Prioritisation and performance

- Prioritisation
 - Consequences of failure
 - Interdependency brings complexity
 - ? tool used by HA reliability governance
 - How do we know what needs spending when ?
- Regulated / non-regulated
 - affects investment cycle / cost of service
- Regulator criteria for performance
 - Water leakage not catastrophic
 - Rail reliability of service failure of system
- Quantification of uncertainty
- Preparedness for national / man-made disaster across (all) systems

Problem and opportunity

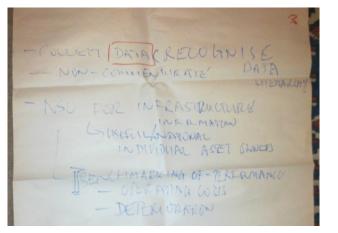
- Ageing structures and a shortage of funds
 - How do we reduce (maintenance) costs and target expenditure most effectively ?
- Existing assets data has improved
 - local authorities know number of bridges and condition
 - Individual structures can be excess of data
 - national asset picture not well described, overall deregulation (? national bridge database)
- Step change in infrastructure creation
 - from "manufacture-stop"
 - to "service-maintain" (eg Rolls Royce)



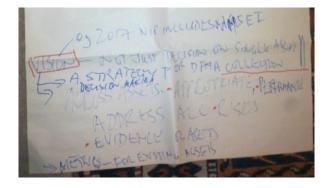
What would it look like ?

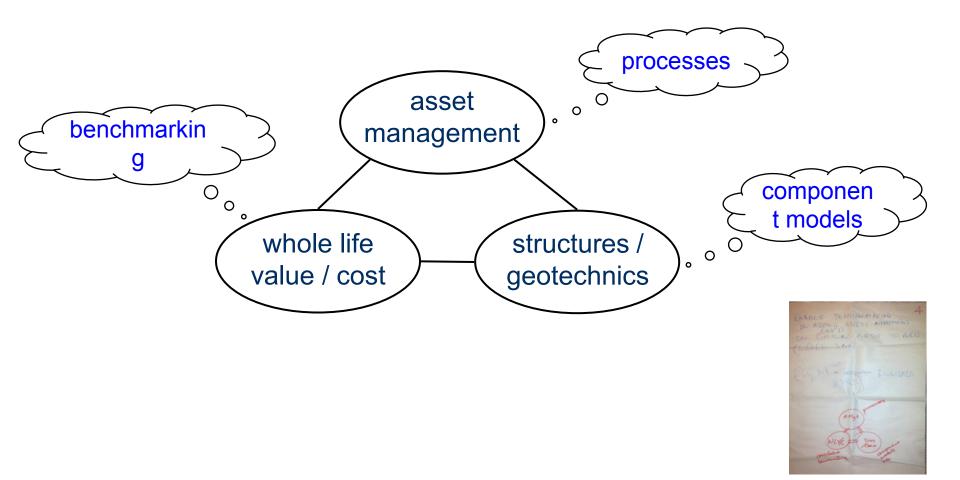
- Enrichment of (NIP) performance metrics
- Refresh/challenge Greenbook approach
 - enabler or barrier to asset management ?
 - biased to demand expansion ? not robust asset performance
- Aid to government or asset owner
- Avoiding surprises

8


- Informing higher levels of decision-making
- Integrated view of state of assets

Data and information


- Collect data (recognise data heirachy)
 - Non-commensurate
- National Statistics Office for infrastructure
 - Useful national information from individual asset owners
 - Benchmarking of
 - performance
 - operating costs
 - deterioration



Vision

- By 5 years' time, the 2017 NIP should be able to report on the NAMSEI (National Asset Management Strategy for Economic Infrastructure)
- Not just decisions on single assets
- A strategy for data collection and decision-making across assets
 - Appropriate performance
 - Addressing all risks
 - Evidence based
 - Metrics for existing assets
- Consistent investment decisions on
 - ageing assets
 - new assets

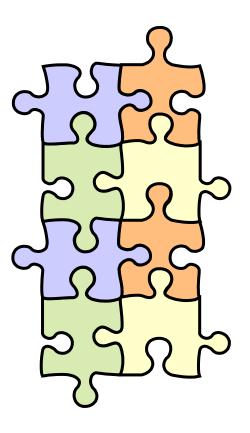
Possible integrated proposal structure

Asset Management group

FIF-2: 17,18 January 2012

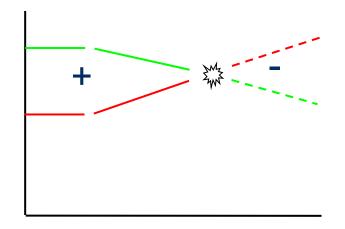
- first break-out session
- second break-out session
- summary as presented

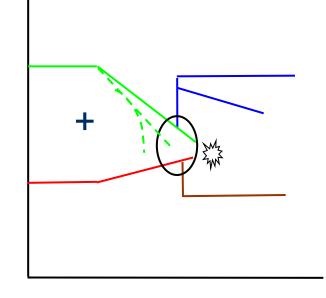
FIF-3: 16,17 April 2012


slides prepared between FIF-2 and FIF-3

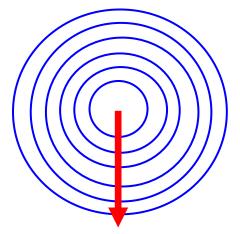
Putting it all together

- Assets
- Performance
- Deterioration
- Failure
- Observation
- Intervention
- Prioritisation
- Wider implications

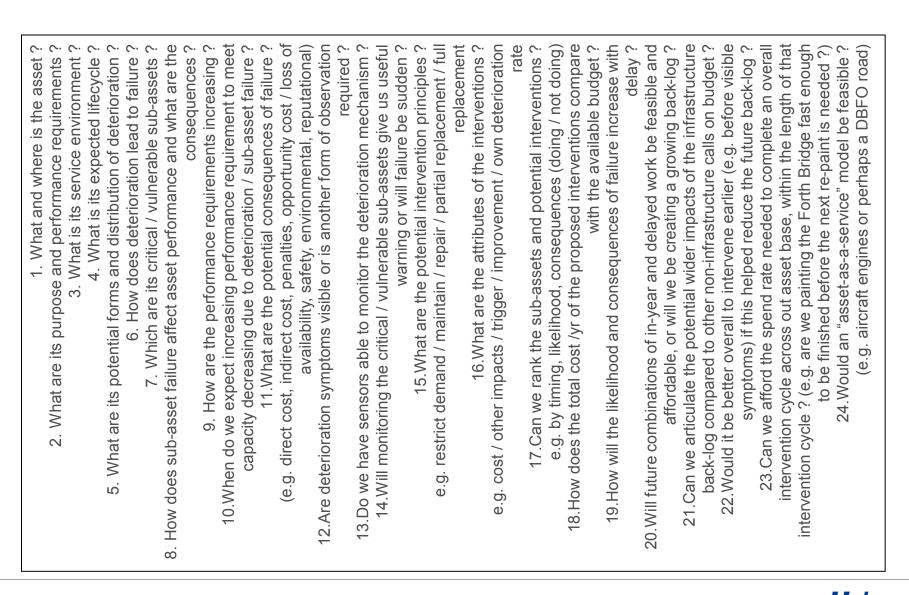

(... and information, processes and people)


Assets, performance, deterioration and failure

- What and where is the asset ?
- What are its purpose and performance requirements ?
- What is its service environment?
- What is its expected lifecycle ?
- What are its potential forms and distribution of deterioration ?
- How does deterioration lead to failure ?
- Which are its critical / vulnerable sub-assets ?
- How does sub-asset failure affect asset performance ?
- How are the performance requirements increasing ?
- When do we expect increasing performance requirement to meet capacity decreasing due to deterioration / sub-asset failure ?
- What are the potential consequences of failure ? (e.g. direct cost, indirect cost, penalties, opportunity cost / loss of availability, safety, environmental, reputational)


Observation and intervention

- Are deterioration symptoms visible or is another form of observation required ?
- Do we have sensors able to monitor the deterioration mechanism ?
- Will monitoring the critical / vulnerable sub-assets give us useful warning or will failure be sudden ?
- What are the potential intervention principles ? e.g. restrict demand / maintain / repair / partial replacement / full replacement
- What are the attributes of the interventions ? e.g. cost / other impacts / trigger / improvement / own deterioration rate
- Can we rank the sub-assets and potential interventions ? e.g. by timing, likelihood, consequences (doing / not doing)
- How does the total cost /yr of the proposed interventions compare with the available budget ?
- How will the likelihood and consequences of failure increase with delay ?



Prioritisation and wider implications

- Will future combinations of in-year and delayed work be feasible and affordable, or will we be creating a growing back-log ?
- Would it be better overall to intervene earlier (e.g. before visible symptoms) if this helped reduce the future back-log?
- Can we afford the spend rate needed to complete an overall intervention cycle across our asset base, within the length of that intervention cycle ? (e.g. are we "painting the Forth Bridge" fast enough to be finished before the next re-paint is needed ?)
- Would an "asset-as-a-service" model be feasible ? helpful ? (e.g. aircraft engines / DBFO roads)
- How could we articulate the potential wider impacts of the infrastructure back-log compared to other non-infrastructure calls on budget ?
 - Across asset hierarchy ?
 - Across asset types ?
 - Across networks and systems ?
 - Across funding streams ?
 - Across Government Departments ?

Thank you

