





Ground and Structural Engineering Research Challenge



www.nottinghillgate.co.u



www.surgical-blog.com







www.otm.illinois.edu



# Materials for Life (M4L):

Biomimetic multi-scale damage immunity for construction materials

Prof Bob Lark, Dr Diane Gardner, Dr Michael Harbottle, Prof Tony Jefferson.

Dr Abir Al-Tabbaa, Dr Janet Lees, Dr Michelle Oyen, Prof Chris Abell.

Dr Kevin Paine, Dr Richard Cooper, Dr Andrew Heath.



# M4L: Vision

- A sustainable and resilient built environment and infrastructure
- Self healing materials and structures that continually monitor, regulate, adapt and repair themselves
- Enhanced durability, improved safety, reduced maintenance costs



M4L inspired by nature

# M4L: Scope and Aims

# A new generation of unique, versatile & robust self-healing construction materials

- Address structural/geotechnical applications & damage scenarios
- Focus on conglomerate materials (e.g. concrete, grout, grouted soils)
- Interdisciplinary, inspired by nature
- Self-healing over multiple spatial & temporal scales
- Novel and transformative
- Born of both Networks





Atomic scale

C-S-H Molecular level <1nm

# **Multi-scale Damage**

|                                                   | Size of crack   | Scale of                                   | Description of damage/dislocation                                                                                                                                                                                 |
|---------------------------------------------------|-----------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | /dislocation    | phase                                      |                                                                                                                                                                                                                   |
| Nano scale<br>C-S-H matrix/gel<br>5nm – 100nm     | <1nm            | 5nm<br>(nano)                              | Defects in the structure (e.e. vacancies<br>due to dissolution of certain atoms,<br>calcium leaching, interstitial or extra<br>atoms etc.). Structural changes due to<br>chemical reactions such as alkali-silica |
|                                                   |                 |                                            | reaction etc.                                                                                                                                                                                                     |
| Nano/Micro scale<br>Cement paste<br>0.1μm – 100μm | 5nm –<br>100nm  | 100nm<br>(nano)                            | Dislocations between CSH particles seen<br>as changes to packing of CSH 'globules'                                                                                                                                |
| Micro/Meso scale                                  | 0.1μm -<br>50μm | 0.1μm -<br>100μm                           | Dislocations (or damage) within the CSH matric and Ca(OH) <sub>2</sub> crystals.                                                                                                                                  |
| Cement paste +<br>sand<br>0.05mm – 5mm            | 50μm – 1mm      | (mano/micro)<br>50µm – 5mm<br>(micro-meso) | Micro cracks coalesce to form networks of<br>meso cracks. Also debonding between<br>aggregate particles and cement matrix in<br>Interface Transition Zones (ITZs).                                                |
| <b>Macro scale</b><br>Mortar, Concrete<br>>5mm    | 0.2mm –<br>10mm | >1mm<br>(macro)                            | Continuous macro cracks formed when<br>meso cracks in hardened cement paste<br>merge and also link adjacent debonded<br>ITZs.                                                                                     |

# **Micro-scale Healing**

- Microencapsulation
- Range of cargos
- Responsive to different stimuli and trigger mechanisms
- Release and healing efficiency







## **Meso-scale Healing**

- Bacterial healing
- Calcium Carbonate (CaCO<sub>3</sub>) / Calcite
- Delivery & survivability in cementitious matrix
- Release & healing efficiency





# **Macro-scale Healing**

- > Autonomic / Autogenic
- Use of SMP tendons and grids
- Use of recycled plastics
- Monitoring & activation systems
- Alternative crack control mechanisms







Autogenous healing enhanced

Cracks form after loading

Tendons activated to close crack

Variant I - Crack Closure

Cracks prevented or limited to small widths

Tendons activated before mechanical loading



Tendons activated before mechanical loading

Variant II - Crack Prevention Variant III - Tri-axial Confinement



## **Multi-scale Healing**



- Vascular flow networks
- Methods for network incorporation in cementitious matrix
- Integration & testing of multi-scale healing systems
- > Optimise system behaviour
- Economic study of individual & combined healing systems
- Demonstration projects in field environments













### <u>WP4</u> Multi scale Flow Networks (PDRA 4)

### WP3 Meso/Macro scale Crack prevention (PDRA 3)





### WP1 Nano/Micro scale

Microcapsules (PDRA 1)

### WP2 Micro /Meso scale Bacteria (PDRA 2)













### <u>WP4</u>

Multi scale Flow Networks (PDRA 4)

### WP3

Meso/Macro scale Crack prevention (PDRA 3)

### UNIVERSITY OF CAMBRIDGE

### <u>WP1</u> Nano/Micro scale Microcapsules (PDRA 1)

WP2 Micro /Meso scale Bacteria (PDRA 2)





•Field demonstration projects •Steering group participation •Scale-up and commercialisation

• Technology transfer • Host PDRA visits • Dissemination of project findings • Fund PhD students

# **Scale-Up and Affordability**

### Scale up

- Learning from our academic collaborators and other sectors
- Potential scale up of individual components being identified
- Industrial collaborators will help address constructability challenges

### Affordability

- Promising initiatives in other sectors to minimise production costs of similar materials e.g. microcapsules
- Compatibility with cost of admixtures and additives
- Potential use of recycled materials, e.g. plastics
- Reduction in overall costs, e.g. with less steel reinforcement and cement
  - Reduction in whole life costs



www.tudelft.nl

#### Scaling up of healing agent at TU Delft



www.tudelft.nl

# **Whole Life Costs**

Initial indications demonstrate up to 50% saving in life cycle costs

Activity in T4.5 will address the whole life cost in more detail.

| Items for steel<br>reinforced<br>concrete | Quantity for<br>1m <sup>3</sup> of<br>concrete | Unit Cost<br>(£/kg) | Cost for 1m <sup>3</sup> of<br>conventional reinforced<br>concrete (£) | Cost for 1m <sup>3</sup> of M4L<br>reinforced concrete<br>(£) |
|-------------------------------------------|------------------------------------------------|---------------------|------------------------------------------------------------------------|---------------------------------------------------------------|
|                                           | (kg)                                           |                     |                                                                        |                                                               |
| Concrete                                  | 2400                                           | 46                  | 46                                                                     | 46                                                            |
| Reinforcing steel*                        | 413                                            | 1                   | 413                                                                    | 413                                                           |
| Microcapsules**                           | 5                                              | 2.5                 |                                                                        | 12.5                                                          |
| Bacteria**                                | 5                                              | 4                   |                                                                        | 20                                                            |
| Flow Networks                             | 4                                              | 6.5                 |                                                                        | 26                                                            |
| PET                                       | 6                                              | 6.5                 |                                                                        | 39                                                            |
| TOTAL                                     |                                                |                     | 470                                                                    | 556.5                                                         |

\*Based on 250kg/m<sup>3</sup> concrete

\*\*2% weight with respect to cement

| Activity               | Unit cost<br>(£/m <sup>3</sup> ) | Frequency                                                                       |  |
|------------------------|----------------------------------|---------------------------------------------------------------------------------|--|
| Special Inspection     | 2.6                              | Every 5 years                                                                   |  |
| Destructive evaluation | 16                               | Every 10 years for conventional concrete                                        |  |
| Monitored evaluation   | 9.6                              | Continual process for M4L concrete                                              |  |
| Major patch repairs    | 111                              | 6 every 100 years<br>conventional concrete<br>1 every 100 years M4L<br>concrete |  |
| Replacement            | Initial<br>Construction<br>cost  | Once every 100 years for<br>conventional concrete only                          |  |

Cusson D., Lounis, Z., Daigle, L. Cement & Concrete Composites 32 (2010) 339-350 Dunn S. C., Jefferson A. D., Lark R. J., Isaacs B. Journal of Applied Polymer Science 120(5), 2516-2526, 2011.







### Properties of healing components:

- Responsive to host material damage
- Resistant to internal and external actions
- Compatible with the host matrix
- Long term efficacy



www.commandalkon-tms.nl

Protection of healing agent in porous aggregates and coated compressed powder tablets

### 1. A58, The Netherlands, 2010

• First engineered self-healing asphalt road with conductive fibres

### 2. University of Illinois, USA (field trial), 1994

- Four full scale concrete bridge decks with adhesive filled fibres
- Strength increased and cracks diverted following repeated loading
- Excellent performance over 3 years of monitoring

### 3. Interstate 94, Michigan, USA, 2009

• Bridge deck link slabs: Engineered Cementitious Composite with polypropylene fibres

### 4. Paviljoen Galder, The Netherlands, 2012

• Concrete crack repair with bacterial solution

### 5. Delft University, The Netherlands (field trial), 2009

• Soil Stabilisation using bacterial solution











Damage Indicating Paint www.sensorprod.com

### **Coatings and paints**



Scratch Healing Paint www.autoevolution.com



Artificial Skin www.theengineer.co.uk

**Polymer-Metal Skin** 



Sea Urchin www.asianscientist.com/

### **Bio-inspired materials**



Self Healing Polymers www.americanscientist.org

### Polymers and Polymer Composites



HGF within CFRP www.iccm-central.org/bondip222498p



Oil and Gas Sector BP-ICAM

• Self-healing systems • Fundamental properties • Implementation • Routes to commercialisation

• Technology transfer

# M4L and Beyond

- Development and demonstration of a suite of self-healing construction products and technologies that have been tested in real life situations.
- Establishment of UK Virtual Centre of Excellence to act as a platform for the further development of intelligent construction materials for structural and geotechnical applications.
- Bring together the relevant international community for the first time to collectively make significant advances for optimum impact.
- > Establishment of **site-based demonstration** projects for further exploitation.
- Contribution to the vision and legacy of Limesnet and FIF communities by working closely with other successful bids to address the wider structural and geotechnical engineering challenges.
- Continuation of the work through PhD projects and with others.
- Acquisition of additional funding to expand skills and further exploit the momentum of M4L.