

Providing Confidence in Durable Composites

Toby Mottram - PI Chris Pearce Peter Gosling, Phil Purnell, Wendel Sebastian, Mark Evernden, Chris Kilsby, Łukasz Kaczmarczyk

Brought together by LimesNet

Introduction

Composites represent an enabling technology for a resilient, adaptable, low-carbon **UK infrastructure**

Revolutionising the Aerospace industry

Can now do same for Infrastructure

Durability is the main hurdle for composites in a 50+ years infrastructure environment

Composites in Infrastructure (current and future)

Bridges

- Manufactured under factory conditions
- Lightweight
 - Fast erection No need to strengthen foundations
 - Small cranes for installation
- Easily fabricated off-site
- What about long term performance?

Innovative structural forms

- Lightweight \rightarrow large-span structures
- Dramatic new forms enabled

Composites in Infrastructure (current and future)

Wind/wave/tidal turbines

 Larger blades require materials with high strength-to-weight and stiffness-to-weight ratios

Only composites can achieve this

Structural repair & adaptation

(e.g. bridge repair)

- Increasingly prevalent in ageing infrastructure
- Avoid unnecessary use of primary resources
- Providing infrastructure resilience

Composites offer unique solutions

Many other examples of use: Transport, communications, energy, water services, ...

DURACOMP Project

DURACOMP Project

DURACOMP Project

Centre for Innovative Construction Materials

Institute for Resilient Infrastructure, Leeds

Project Partners

EPSRC Review of Ground & Structural Engineering identified **TWO challenges:**

- Novel Materials and Novel Use of Materials in the Built Environment
- Resilient and Sustainable Infrastructure

Aims of Call:

- Stimulate revolutionary cross-disciplinary thinking
- Generate new ideas in the research challenge areas

How does our Proposal Fit the Call?

Stimulate revolutionary cross-disciplinary thinking

- Materials science, computational mechanics, reliability analysis, environmental science and structural engineering
- Composite specialists, experience academics and ECRs

Generate new ideas in the research challenge areas

• Confidence in Durability will enable new, innovative, complex and unusual structural solutions that exploit properties of composites.

National Importance

- Sustainable and resilient infrastructure UK 2010 National Infrastructure Plan
- Low carbon and low energy agenda UK Government 2011 commitment for mid 2020s
- Position UK as world-leader in design and specification of composite materials for infrastructure - a rapidly expanding market.
- Agenda setting in developing international standards, in particular EC10

Climate Change

Designing composite materials and structures to be resilient to climate change is a key tenet of the project

> To cope with inherently unpredictable changes in future physical and environmental loadings

- Chris Kilsby is Professor of Hydrology and Climate Change
- Embedded in all WPs:

Degradation processes

explored computationally stochastic prope

UKCP09 Weather Generator to define probabilistic-based projections of future weather scenarios.

Factors and mechanisms driving the processes of material degradation quantified

11

Adapting Technologies between Sectors

- We will utilise knowledge from other sectors, e.g. aerospace
- Aerospace industry has investigated areas such as fatigue
- Fundamental differences between Aerospace and Infrastructure
- WS is core member of Bristol's Advanced Composites Centre for Innovation and Science, with a focus on Aerospace.

 \rightarrow share experience and knowledge in testing and analysis

• Our multiscale modelling techniques originally developed for metal matrix composites and applied to textiles & cementitious materials

In Conclusion

We will, for the first time, integrate:

- Material and component testing,
- Multiscale predictive modelling and
- Probabilistic analysis

Creating a new and unique stochastic modelling framework for infrastructure composites

Leading to establishment of Centre of Excellence in durability performance

What are the challenges, gaps in knowledge and/or components and/or end uses?

DURACOMP

Cooling towers

10 M 10 10

What could the future look like over the River Thames?

Dawlish Station 2013

Optima Projects /