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Principal Structural Engineering Research Interest

Standard shapes and bolted connections

Standard for Load Resistance Factor
Design (LRFD) of Pultruded Fiber-
Reinforced Polymer (FRP) Structures

Research
Methodology:
Combination of full-
sized physical testing
and analytical and
computational (FEA)
analysis

Deliverables and
Impact: Information
for the preparation of
safety critical design
‘rules’ and provisions
in standards and or
codes of practice
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Warwick University, 1987-:
- Materials and structures teaching
- Steel Structures
- Forensic Engineering
- Civil Research Group
- newer construction materials
- structural analysis
Institution of Structural Engineers, member 1994-:
- Branch Committee, 1995 —
- Journal Editorial Board 2006 —
Eurocodes, 2011-: CEN/TC 250 WG 4 FRP Eurocode

LIMESNET, 2011-12: Member in ESPRC Network for
Low Impact Materials and innovative Engineering
Solutions for the built environment

NGCC: Convening steering group preparing publication
for Guidance for the Design of FRP Bridges

EPSRC 2010-2014: Connections and Joints for Buildings
and Bridges of Fibre Reinforced Polymer
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Sustainability and vibration serviceability

Aims:

-To design “vibration-free” structures

-To enhance human well being in built environment
-To achieve non-conservative material saving designs

If to translate this to structures dynamically excited and
occupied by people, we have to know more about...

Dynamics of light slender ~ Dynamics of humans Human interaction with and
perception of structures

structures
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Learning about kinematics and kinetics of human actions

Gait Lab facility Tracking and modelling human body

Human body has capacity to both attenuate and amplify structural vibrations.

Understanding conditions leading to the two situations on as-built structures will lead to
better controlled and high-quality infrastructure.
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Modelling human-structure dynamic system
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Example: dynamics of human-slab structure system
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Example: optimising vibration performance

— Design of walking paths
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 Funded by

W
o TATA steel TATA

 Objective

o Investigation Into energy dissipation
performance of concrete-filled
tubular braces under cyclic loading

WA}QV/ICK Dr. Tak-Ming Chan



 Methodology
o Full scale experimental tests
o Finite element simulations

e Target

o Generation of hysteretic performance,
data

WA}QV/ICK Dr. Tak-Ming Chan



. Funded by

0 Engineering Physical Sciences
Research Council P

e Supporters 1

o TATA Steel, Arup, Steel h

Construction Institute

WA}QV/ICK Dr. Tak-Ming Chan



 Methodology
o Full scale experimental tests
o Finite element simulations
e Target :

o Generation of hysteretic
performance data for semi-rigid
connections

WA}QV/ICK Dr. Tak-Ming Chan
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Ultimate goal

Loss of Resilience

Quality

Quality of 100
of 100 Infrastructure

Infrastructure (percent)

(percent) vs 50 Extreme loading
50 )

OUR RESEARCH EMPHASIZES ON THE DEVELOPMENT OF STRUCTURAL SYSTEMS
WITH AN INHERENT POTENTIAL TO PROVIDE ROBUSTNESS AND RAPIDITY

Robustness: Resistance
Rapidity: Speed with which occupation, use, service, etc.. are
restored after severe loading conditions
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Ultimate goal:

*Elimination of the socio-economical risks related to extreme loading
conditions (earthquakes, windstorms, blast)

Research on:
Minimal-damage structures under extreme loads

Structures which can be easily repaired without loss of use or
occupation

eAdvanced solutions for retrofitting existing infrastructure
economically and time efficiently

Consider:
eLeaner construction
eReduction of steel weight
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1. Resilient damage-free self-centering steel MRFs

Gap opening in the Initial
beam-column

interface

=4 Dcformed
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Recently developed innovative
steel post-tensioned connection

Flange reinforcing
plates

Webreinforcing

Strong supporting
plates

plates

Poststensionedihigh :
strength'steellbars = ( Web Hourglass Pins
| R (WHPs)
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Design concept

e Gaps open and close in the beam-column interface

e Post-tensioned high strength steel bars clamp the beam to the column
and provide self-centering capability

e Energy dissipation elements (WHPs) which are activated when gaps open
and can be very easily replaced without bolting or welding
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How it works...

Contribution of post-
tensioned bars

@  (Contribution of WHDPs

Total connection
4— moment-rotation
behaviour
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Web Hourglass Pins (WHDPs)

provide enhanced:
1)energy dissipation capacity
2)fracture capacity

J)hysteresis without pinching
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Large-scale experimental validation of connection behaviour

Ultimate
response

Applied force (kN)

1st run
—2nd run

e Beam and column damage-free for drift < 5%

e Elimination of residual drift

e Sequence of tests along with replacing damaged WHPs :robust non-
disruptive reparability

e Reduced site construction (easy erection process, less welding and
bolting)

e Y P P A I T T al.i T A

P T T T
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Currently we are working on...

Models for global analysis of
post-tensioned frames

Lean-on cojJumn
iap
Ground level linkage
Node (typ.) —
Jh ”lk /\J

BRITISH STANDARD 3 EN BRITISH STANDARD 3 BRITISH STANDARD
- — ]

FEM models

Eurocode 3: Design of Eurocode 3: Design of Eurocode 8: Design of

steel structures — steel structures — structures for

Part 1-1: General rules and rules for earthquake

buildings resistance —

Part 1: General rules, seisjnic actions
and rules for buildings
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2. Resilient minimal-damage structures equipped with rate-
dependent passive dampers

FIuid viscous dampers

Elastomeric dampers

4.57m '3.96m

4 @ 9.15m = 36.6m ‘

e Structural and non-structural damage control

e Steel weight reduction (up to 40%)

e Retrofit of existing structures

o Effective for multi-hazard mitigation (blast, windstorms, earthquakes)
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Advanced models for rate-dependent Practical design procedures for structures with
materials (e.g., elastomers) rate-dependent passive dampers

Tools for real-time hybrid testing

e > dA,(t)

Analytical
" d,(t) [r— dA(t) Substr);cture
- O _ [ dA, (1)
Elastomer 2 Hybrid test
Damper . dy(t) Experimental
— \_’y Substructure
(laboratory)
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3. Extension of service life of bridges using semi-active control

MR Damper Integration of structural dynamics,
structural design, control theory and sensors

Computer

- Sensors
) Controller ensar
Thermal Expansion

Accumulator

Control
Actuators

eonetic™ Seis mié Damper
MRD-9000

Extend service life under heavy
traffic loading (economically and
time efficiently)
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CONSTHNOMIVE DESIGN USING
MOPELS AND INNOVATIVE STRUCTURAL
CILOBAL @)  STRUCTURAL  <4mmmm) CONIONEN
NESPONISIE DETAILS AND ANDRSNERIID
SIMULATIONS SMART NESTING
MATERIALS

|

RESILIENT DAMAGE-FREE
STRUCTURAL SYSTEMS
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Sustainability & climate change

Dr Stefano Utili, Associate Professor at University
of Warwick, Civil Group (geotechnical engineering)

Research on flood defence embankments:

1.Long term monitoring of the performance of flood defence
embankments subject to progressive deterioration due to climatic
effects (research funded by the Scottish Executive and Institution of

Civil Engineers)

2.Determination of geotechnical expressions for ultimate limit states of
flood defence embankments (funded within EU FP6 Floodsite, EPSRC
FRMRC consortium, Environment Agency)



Embankments are an essential infrastructure for the defence from
flooding and canalisation of water flow. They are becoming increasingly
Important due to climate change and renewed emphasis on sustainable
development.

» Every year the UK alone spends £450 million on the maintenance
and construction of new flood defence embankments.

In Europe an area as big as 40.000 km square housing 16 million
people is flood prone.

Hurricane Katrina (2005) is an example of what happens when flood
defence embankments fa|I s :




1 Long term monitoring of the performance of flood defence embankments

Clay embankments are subject to desiccation fissuring/cracking. The
presence of cracks in the embankment body may cause failure of the
embankment for a hydraulic load significantly lower than the design one.

Section A —

Resitivity arrays

Qtatinn 2

——Resitivity arrays

s 2B fill material Retentlon Pond

Embankment made of glacial till along e |
the river Irvine, Galston (Scotland N ,7//// 5 ﬂ
( ) m - ’7// / / //%

m
Minimum 0.5m where
red

Typical Cross Section 1 of Flood
Embankment
Scale 1:100



1 Long term monitoring of the performance of flood defence embankments

Point P: Continuous data acquisition

Data from a suite of
geotechnical tools have
been crossed with
geophysical readings
(resistivity array and CMD
conductivity) to work out the
water content function
w=w(X,y,z,t) for the entire

1 m probe profile

embankment
. DW2
&
gate
PR2W1 “E‘m (PR2E2)
RO \ N DE1 / PR2E3
PR2W3
i s * e Eo e o,,,,o,,,,,o,
Ll
DE2 PR2E4
0O
. DE3
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western side crest eastern side




1 Long term monitoring of the performance of flood defence
embankments

Achieved goals

* A link between water content and fine
fissuring / cracking has been established

e The health of embankment has been
related to its water content



2 Determination of geotechnical expressions for ultimate
limit states of embankments subject to flooding

In recent years | pursued two research lines:

1. Influence of tension cracks (dry or filled with water) on
embankment stability

2. Determination of suitable geotechnical expressions for the
following failure mechanisms: fine fissuring and overtopping. This
research was funded by EU FP6 Floodsite, the EPSRC FRMRC
consortium and the Environment Agency.



2 Influence of tension cracks on embankment stability

An analytical expression was achieved by means of the Limit Analysis
upper bound method which provides:

a) the limit load for any tension crack length and hydraulic condition
(water level);

b) regions of the embankment where the presence of cracks does not
affect the embankment stability.

500
—+—¢=10 spiral b)
450~ —&— =15 spiral
—+—¢=20 spiral
400+ —8— =25 spiral _
a) —5—¢=30 spiral region 2:
350 $=10 plane Slope
$=15 plane JL.
00 4=20 plane th?géltgg ';’ region 1:
=25 plane Yy L
$=30 plane the slope stability is
region 1: presence of not affecte]gl by tEe
slope stability is | cracks presence of cracks
not affected by the
presence of cracks

slope inclination [deg]

After (Utili S. On the stability of slopes with tension cracks by limit analysis. Geotechnique)
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