UK Infrastructure Transitions Research Consortium

Long term dynamics of interdependent infrastructure systems

An EPSRC Programme Grant

Jim Hall Oxford University

Propositions

- Transformations of infrastructure systems are required in order to:
 - mitigate carbon emissions
 - adapt to a changing climate and build resilience to extreme events and man-made threats
 - prepare for demographic changes e.g. ageing
 - provide the reliability and service required for a 21st Century advanced economy
- Inter-dependence between
 - infrastructure networks (energy, transport, water, waste, telecoms)
 - the economy and society
 - land use and the built environment
 - is a complexity, a constraint and an opportunity
- The legacy of decisions and timescales of change are long. Potential for lock-in abounds
- Uncertainties are endemic, but decisions need to be made

Research challenges

- 1. How can infrastructure capacity and demand be balanced in an uncertain future?
- 2. What are the risks of infrastructure failure and how can we adapt national infrastructure to make it more resilient?
- 3. How do infrastructure systems evolve and interact with society and the economy?
- 4. What should the UK's strategy be for integrated provision of national infrastructure in the long term?

The Investigators

Prof Jim Hall (University of Oxford)) is Director of the ITRC

Prof Nick Jenkins (Cardiff University) is an expert in energy supply and transmission

Dr Nick Eyre (University of Oxford) is an expert in energy demand

Prof John Preston (University of Southampton) is an expert in transport systems

Prof Chris Kilsby (Newcastle University) is an expert in water resource systems

Prof Tom Curtis (Newcastle University) is an expert in waste water systems

Prof William Powrie (University of Southampton) is an expert in solid waste and geotechnics

Tyndall°Centre for Climate Change Research

Prof Cliff Jones (Newcastle University) is an expert in the reliability of computer-based systems

Dr Seth Bullock (University of Southampton) is an expert in complex systems

Dr Stuart Barr (Newcastle University) is an expert geospatial data analysis

(University of Southampton) is an

Prof Robert Nicholls

Prof Peter Tyler (University of Cambridge) is an expert in regional economics

expert in the impacts of climate change

Prof Mark Birkin (University of Leeds) is an expert in analysis of demographic change

Dr Jim Watson (University of Sussex) is an expert on socio-technical transitions and the governance of energy systems

... plus a wider research team

- 42 person-years of researchers
- 4 PhD students
- Cambridge Econometrics, CEH Wallingford, Cranfield University
- stakeholder champion: Roger Street
- programme manager: Ben Kidd
- affiliated students and projects

... plus a remarkable group of project partners

EA Technology rup ssociation of North East Councils tkins AM Nuttall ack and Veatch P International ABF abinet Office ostain epartment for Environment, Food and Rural Affairs epartment for Transport epartment of Communities and Local Government epartment of Energy and Climate Change nvironment Agency **On Engineering** alcrow ighways Agency frastructure UK stitution of Civil Engineers

Institution of Engineering and Technology Institution of Mechanical Engineers JBA Consulting Local Government Association Met Office Mott MacDonald MWH National Grid Network Rail Northumbrian Water Ordnance Survey Parsons Brinckerhoff **Royal Haskoning** Scottish and Southern Energy Swanbarton Town and Country Planning Association Transport Scotland **UK Water Industry Research United Utilities** Veolia Environmental Services Willis Yorkshire Water

Structure

UKERC

UK Energy Research Centre

EPSRC <

Improving decision making

Balancing infrastructure capacity and demand under uncertainty

Understanding the future risks of infrastructure failure

Infrastructure as a complex adaptive system

In order to identify transition strategies that:

- Exploit-dependence rather than being vulnerable to it
- Robust to uncertainty (min-max, least regrets, info-gap)
- Adaptable (flexible design) and keep options open (real options)
- Resilient (resistance to shocks, capacity to recover and learn from failure)
- Can demonstrably lead to more sustainable outcomes

~ ~	2010	2030	2050		
ep	New gas and nuclear ca	apacity			
Energy	Expansion of wind, C hydro, solar, geothermal	\wedge			
	New transmission and distribution capacity	Tidal and wave energy	energ		
	Distributed generation of heat and power	Distributed generation of heat and power distribution network			
Demand management and land use planning	Demand reduction in energy, water, waste processing	ation of syner; port, ICT, wat the built env			
	Intelligent transport sys	Integrated management of urban hydrological and stems nutrient cycles	gies betw er, waste, ironment		
Transport, water and waste	New public transport and infrastructure	rail Bioengineering of water and sewage treatment	land		
	Integrated flood manage				

Outcomes

A new generation of methods for modelling capacity, demand and interdependence in National Infrastructure systems.

- National network models to analyse the vulnerability of interdependent infrastructure systems to failure.
- Pioneering simulation models of how infrastructure, demography and the economy evolve in the long term.
- 3 national assessments of how national infrastructure can be transitioned to a more sustainable configuration:
 - Year 1: 'Fast track' analysis of possible futures for infrastructure in the UK
 - Year 3: Assessment of future prospects infrastructure demand and capacity and appraisal of technology and policy options
 - Year 5: Assessment report of the risks of infrastructure failure and the implications for strategies for infrastructure provision
- Datasets of national infrastructure, demography, economy, demand and climate hazards

Programme

			â						
	and the	2022	012	oth	072		Lead		
	'V	'V	·V	'V	12	RA months and institution	academic		
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4				
WS1 Balancing infrastructure capacity and demand under uncertainty	Dr Nick Eyre (Oxford)								
1.1 Modelling framework for capacity/demand analysis						18(A) (Newcastle) + 18(A) (unallocated) Hall		
1.2 Establish scenario dimensions and parameterise uncertainties				Y		12 (Southampton)	Nicholls		
1.3 Regional multi-sectoral economic scenarios				Programme	review	Cambridge Econometrics	Tyler		
1.4 Geographical patterns of urbanisation and demand				(MS2) and co-		18 (Leeds)	Birkin		
1.5 Energy CDAM	•					24 (Cardiff) + 18 (Oxford)	Jenkins/Eyre		
1.6 Transport CDAM				production C	ycie 2	24 (Southampton)	Preston		
1.7 Water CDAM				(Task 5.3) prioritise opportunities for		18 (Newcastle)	Kilsby		
1.8 Waste CDAM						18 (Newcastle) + 12 (Southampton)	Curtis/Powrie		
WS2 The future risks of infrastructure failure	Prof Jim Hall (Newcastle)								
2.1 Spatial scenarios of climate-related extremes				innovation a	nd	18 (Newcastle)	Kilsby		
2.2 Assimilate spatial models of climate related hazards				integration		6 (Newcastle)	Hall		
2.3 Characterise the vulnerability and interdependence of NI						12 (Newcastle)	Barr		
2.4 Interdependent network models						24(A) (Newcastle) + 18(A) (unallocated	Hall		
2.5 ICT and cascading failure						1 PhD (Newcastle)	Jones		
2.6 Economic consequences of NI failure						24 (Cambridge)	Tyler		
WS3 Infrastructure as a complex adaptive system	Dr Seth Bullock (Southampton)								
3.1 Co-evolution of urban/industrial land use and infrastructure provision						24 (Leeds)	Birkin		
3.2 Economic implications of long term changes in infrastructure supply and de	emand ////					1 PhD (Cambridge)	Tyler		
3.3 Dynamic network models						24 (Southampton)	Bullock		
3.4 An new generation of NI complex system models						12(A) (Southampton) + 16(A) (unallocat	Bullock		
WS4 Enabling tools	Dr Stuart Barr (Newcastle)								
4.1 Spatial database development			Prog	rogramme review (MS2) targets urther tool development		12(A) (Newcastle)	Barr		
4.2 Tools for uncertainty and sensitivity analysis			furth			4 (Newcastle)	Hall		
4.3 Tools for decision analysis						4 (Newcastle)	Hall		
4.4 Info-gap analysis for development of robust transition pathways						1 PhD (Newcastle)	Hall		
4.5 Real options analysis for development of transition pathways						1 PhD (Newcastle)	Hall		
WS5 Co-production with stakeholders of integrated transition strategie	Prof Robert Nicholls (Southampton)								
5.1 Co-production Cycle 1: alternative infrastructure futures						12(A) (Newcastle) + 12 (Southampton)	Hall/Nicholls		
5.2 Infrastructure governance						24 (Sussex)	Watson		
5.3 Co-production Cycle 2: Interdependent systems' transition pathways						24(A) (unallocated)			
5.4 Co-production Cycle 3: Dynamic adaptive transition strategies						24(A) (unallocated)			
Project Management	Prof Jim Hall (Newcastle) (PI)								
Project management support and coordination	(M	51	MS2 (M	53	(MS4)	24 (Newcastle)	Hall		
Web site construction and maintenance					\sim	4 (Newcastle)	Barr		
Stakeholder coordination						12 (Oxford)	Street		
Key									

MS Milestone

EPSRC

A Anchor researcher

UKERC UK Energy Research Centre

Next steps and forthcoming events

ITRC Assembly:

- 15 June: Stakeholder workshop to review approach and initial results for the Year 1 Fast Track analysis (Task 5.1)
- 16 June: ITRC researchers assembly
- 17 June: Expert Advisory Board meeting
- 7 June: Infrastructure Resilience and Adaptation showcase event
- 24 June: ARCC workshop with Scottish government and stakeholders
- 30 June: Infrastructure Resilience conference at Leeds University
- tba: Network Rail infrastructure adaptation workshop
- September 2011: launch workshop for ITRC Work Stream 2
- January 2012: Launch of the ITRC Fast Track analysis (national conference)
- March 2012: Invited session on Infrastructure Sustainability at the Planet Under Pressure global conference London (joint with World Bank and OECD)

UK Infrastructure Transitions **Research Consortium** For further information visit : http://itrc.org.uk/home/ or email: roger.street@ukcip.org.uk jim.hall@eci.ox.ac.uk benjamin.kidd@ouce.ox.ac.uk

UK Energy Research Centre

