Geotechnical infrastructure – cutting, embankments, landslides and engineered fills.

Dr Sivakumar DSc and Dr David Hughes,

ROADS Service

Geotechnical Group, QUB

Problem – investigating slope failure.

- Slope failures in infrastructure UK and Ireland
- Changing climate conditions UKCP09

- Ageing infrastructure
- Lack of understanding of the mechanisms of progressive failure

Victorian railway embankments over soft foundations maintaining and stabilising tracks

A joint project sponsored by NIR

ROADS Service

Description of Problem

Problems

- Dynamic movement of the embankment has restricted speed of trains from 90 mph reduced to 60 mph
- Increased maintenance from sleeper movement

Goals

- Reduce dynamic movement and stabilize embankment.
- Increase train speed

Queen's University

Description of Sites Monitoring and modelling

Preliminary arrangement for Remote Laser to measurement dynamic movement of rail

Final arrangement using photo sensitive array for dynamic measurements – and auto data acquisition

Photo-sensor Array ROADS Service

Laser on tripod

Preliminary Dynamic Measurements

NIR/QUB Brackagh Bog Site Test 003 September 22, 2005 12:30

Numerical modelling (Winkler)

Constitutive Model

$$EI\frac{\partial^4 y}{\partial x^4} + \rho A\frac{\partial^2 y}{\partial t^2} + c\frac{\partial y}{\partial t} + ky = P\delta(x,t)$$

Approximate solution taken from Frýba (1972)

Modelling Methodology

- EI and pA terms calculated from embankment construction (using 2 methods)
- k term adjusted to 'fit' magnitude modelled displacement to measured displacements.
- Elastic modulus extracted from model properties

Numerical modelling

Selection of Material Properties 16 16 ELEVATION (m) 15 15 EI Mass/Length -14 14 13 13 K, C/Ccr 12 --12 6 8 6 Δ 2 CHAINAGE (m) 2 8

- Beam Element modelled as the Rail, Sleepers and Ballast.
- Visco-Elastic foundation modelled as the poor embankment fill and soft sub-grade.
- EI=80.17 MNm2, ρ A=7394kg/m \rightarrow k=4.28 MPa

Numerical modelling

All measured data at various train speeds with modelled response

Managing geotechnical risk & improving infrastructure resilience; assessment/monitoring of landslides, cutting and embankments

3 road and rail cutting tills - Loughbrickland, Craigmore & Tullyhappy

The near surface boundary is important – measuring moisture and water table (suctions from SWCC). We have used the Enviroscan –

Field Monitoring

- 1. Near surface moisture Content monitoring,(Θ , t) EnviroSCAN / Diviner 2000
- 2. Near surface (shallow) water table monitoring(z, t)
- 3. Deep pore water pressure monitoring (h, t)

Developing surface based monitoring systems for marine infrastructure: GPR, FOS, acoustic

