

Civil Infrastructure Systems

Mike Mulheron Director Research, CCE

Future Infrastructure Forum – September 2011

EPSRC Network on Resilient and Sustainable Infrastructure

Relevant Expertise

- Marios Chryssanthopoulos
- Gerry Parke
- Mike Mulheron
- Boulent Imam
- Imran Rafiq
- Juan Sagasetta

Peter Clarke, Matt Leach, Paul Smith, David Jesson, Steve Ogin, Prashant Kumar

Research Themes

- Managing current assets
 - Water distribution networks (cast iron)
 - Rail infrastructure (wrought iron)
 - Steel structures (durability and maintenance)
 - Concrete structures (durability and maintenance)
- Facing future challenges
 - New materials (ECC high ductility, self-healing)
 - Surface modifications (self-assembling bio-films)
 - Non-destructive assessment (NMR)
 - Smart Infrastructure Management
 - Climate change (weather prediction and mitigation)
 - Low CO₂ systems (energy, material security)
 - User impact on infrastructure robustness (Agent-based models)
 - Policy and law (Centre for Environmental Strategy)

Multi-scale approach

- Materials level properties and degradation
- Component level micro environment
- Structure level component interaction
- Network/Stock level structure interdependencies

Quantifying Reliability and Consequences \Rightarrow Risk Management

Cast Iron Water Main

Metallography Mechanical Testing

Modelling Reinforced Concrete

- Modelling for Normal / High performance concrete
- Development & utilisation of fracture mechanics-based material models through laboratory testing.
- Modelling interaction between steel and concrete, i.e. Bond
- Modelling tensioning softening of concrete

Deteriorating Components

- Micro-cracking related strength reduction in RC.
- Corrosion related strength and ductility reduction in steel.
- Degradation of bond between the two materials.
- Location of corrosion and implications on performance.

EPSRC Doctoral Training Grant

NLFEA of Deteriorated Beams

NLFEA of Deteriorating Beams

Crushing of corrosion damaged top cover beam S114a

 \Rightarrow reliability assessment of degraded RC members

Quantity of Date

- Testing / monitoring corrosion in RC members
- Reliability of instruments / testing methods
- Past performance of member
- Improving confidence in assessment through qualitative / quantitative methods.
- Bayesian event updating method

Performance monitoring - NMR

Performance updating

Strengthening and repair methods

Monitoring Debonding in Repairs

Use of Chirped Fibre Bragg Grating sensor:

- Monitoring debond initiation and growth in composite-composite and composite-metal bonded joints
- Detecting defects in poorly bonded joints

Deterioration assessment of metallic bridges

Time after 2005 (years)

Probability of failure P_r

Deterioration assessment of metallic bridges

Stress range (MPa)

Assessment of NDE performance 5

Variable	Distribution	Туре
a _d	POD*	Inspection
a _g	Uniform	Repair
a _{fail}	Derived	Mixed
S _r	Rayleigh	Load
S _{max}	Gumbel	

Asset Management for Metallic Bridges

FP7 Grant MAINLINE

- 1. Facilitate the utilisation of **improved assessment and life extension** without increasing risk,
- 2. Improve existing **damage and deterioration mechanisms** and their effect on asset performance,
- 3. Identify and implement **new cost effective replacement/renewal construction methods and logistics**, bearing in mind the logistics and operational constraints across an expanding railway network, and the associated political aspirations towards a sustainable low carbon society,
- 4. Identify and compare new surveying and **monitoring technologies** in order to complement or replace existing techniques,
- 5. Develop methods for determining the **whole life environmental and economic impact** from track and infrastructure maintenance and renewal through the use of various scenarios and management policies.

Whole-Life Performance of Structures

- Modelling deterioration and its effects
- Predicting load demands
- Quantifying safety reserves
- Optimizing maintenance strategies

Health Monitoring Structures

Inspection Cost

Modelling deterioration using Bayesian Belief Network

- Estimation of Risk-Time Profile
- Development of Inspection intervals

CI Trunk Mains Networks

- Aged, complex, buried infrastructure
 - Delivers millions of tonnes of water/day, (24/7)
 - > 6,000's of km
 - > 50% > 100 years service, > 30% > 150 years service
- Develop trunk burst prediction models
 - Reduce risk of the occurrence of bursts
- Minimise impact of bursts
 - Consequence modelling
- Assess methods of mitigation
 - Minimal intervention, high return

Water industry funding £1M, plus £240k from EPSRC IDC's.

Damage and Loss Estimation

- Consequence models
- Modelling damage and collapse of structures under extreme loads (e.g. earthquakes).
- Individual buildings and bridges.
- Groups, portfolios, networks.
- Simplified methods for loss estimation.
- Uncertainty in loss prediction.

EU FP7 Less-LOSS

Resilience to Environmental Change

- Bridge scour
- Corrosion / deterioration
- Temperature stress cycling
- EPSRC Grant EP/I00744X "Bridge reliability under the influence

of changing environmental and demand conditions"

Risk-based Assessment of Bridge Infrastructure

- Bridge infrastructure resilience to hazards
- Consequence modelling for failures (human, economic, environmental, societal)
- Transportation network analysis
- Traffic delay / re-routing modelling
- Casualty modelling from infrastructure failures

SmartEN: Smart Management of Human Environment

- WP1: Wireless sensors networks
- WP2: Sensor Signal Processing
- WP3: Non-Destructive Evaluation
 - Optimum Sensor Locations and Requirements for NDE
 - Combined Monitoring and Inspection Systems
 - Assessment and Long Term Performance Modelling
 - Performance Model Updating Based on Sensor Information
 - Damage identification
- WP4: Smart Proactive Management
 - Proactive Management Strategies
 - Life Cycle Design and Assessment
 - Multi-objective Optimisation

Transmission Tower Collapse

Resilience Response Analysis

Summary

- Managing current assets
 - Characterising and modelling deterioration
 - Performance assessment and prediction
 - Structural health monitoring
 - Reliability and consequence modelling
 - Risk-based asset management
 - Infrastructure resilience

• Facing future challenges

- Impact of climate change
- Consequence modelling
- Smart Infrastructure management
- Multi-scale life cycle analysis